Operator space structure of JC^*-triples

Richard M. Timoney
Trinity College Dublin

Les Bunce (Reading) & Brian Feely (TCD)

GPOTS 21/June/2008
\(JC^* \)-triples and TROs

• on \(\mathcal{B}(H) \), we define the \textit{Jordan triple product}
\[\{x_1, x_2, x_3\} = (x_1 x_2^* x_3 + x_3 x_2^* x_1)/2 \]
A \(JC^* \)-triple is \(X \subset \mathcal{B}(H) \) (closed) subspace, closed under \(\{\cdot, \cdot, \cdot\} \).

• \textit{Ternary product} on \(\mathcal{B}(H) \) is \[[x_1, x_2, x_3] = x_1 x_2^* x_3 \]
A \textit{TRO} is \(T \subset \mathcal{B}(H) \) (closed) subspace, closed under \([\cdot, \cdot, \cdot]\).
Examples

(i) $A \subset B(H)$ a C^*-algebra $\Rightarrow A$ a TRO $\Rightarrow A$ a JC^*-triple

(ii) T a finite dimensional TRO $\Rightarrow T$ a direct sum of rectangular matrix spaces

(e.g. $M_{5,7}(\mathbb{C})$, $M_{8,1}(\mathbb{C})$).

(iii) $X = \{x \in M_n(\mathbb{C}) : x^t = x\}$ is JC^*-triple (not TRO).

Note: $X =$ symmetric $n \times n$ matrices.
Background motivation — JC^*-triples

Consider JC^*-(sub)triples $X \subset \mathcal{B}(H)$ with operator norm. $B_X = \{x \in X : \|x\| < 1\}$ unit ball

$\text{Aut}(B_X)$ transitive (contains a Möbius like group).

X Banach (over \mathbb{C}), $\text{Aut}(B_X)$ transitive $\iff X$ has a JB^*-triple product. (W. Kaup 1983). B_X a bounded symmetric domain. (Original Lie-theoretic approach by Cartan (1932) for $\dim X < \infty$. Jordan approach due to M. Koecher (1969).)

‘Most’ JB^*-triples are (isometric to) JC^*-triples.
Notions of equivalence?

Biholomorphic equivalence of bounded symmetric domains

Linear isometry of (unit balls of) JB^*-triples

Algebraic (JB^*-triple) isomorphism

Conclusion: We treat two JC^*-triples as the ‘same’ if they are (linearly) isometric
Background motivation — TROs

Associative product \[[x_1, x_2, x_3] = x_1 x_2^* x_3 \]

Characterised by Zettl (1983) in abstract algebraic terms. Left \(C^* \)-algebra of \(T \) is \(\mathcal{L}_T \) (generated by \(x_1 x_2^* \)). Right \(C^* \)-algebra of \(T \) is \(\mathcal{R}_T \) (generated by \(x_1^* x_2 \)). Algebraic TRO morphisms extend to left and right \(C^* \)-algebras.

Isometry of TROs does not imply algebraic TRO isomorphism. Simplest examples: \(M_{2,1}(\mathbb{C}) \) and \(M_{1,2}(\mathbb{C}) \).

Language of operator spaces gives another viewpoint.
TROs in operator space theory

- TROs T_1 and T_2 are the same \iff completely isometric.

- TRO structure \Rightarrow unique compatible operator space structure

- (Hamana theory) every operator space can be canonically embedded in its injective envelope and that envelope is a TRO.
Is a JC^*-triple an operator space?

Answer: Not so obviously (or canonically)
Too obvious: $X \subset \mathcal{B}(H)$ closed under triple product $\Rightarrow X$ an operator space.

The snag is that two JC^*-triples are considered the ‘same’ if they are isometric and this does not imply complete isometry. [Neal & Russo]

e.g. the TROs $M_{2,1}(\mathbb{C})$ and $M_{1,2}(\mathbb{C})$ are the same as JC^*-triples, but not as operator spaces. Isometric but not completely isometric.
Universal TRO

Theorem: Given a JC^*-triple X, there is a unique universal embedding $\alpha_X : X \to T^*(X)$ into TRO s.t.

- α_X is a JC^*-triple isom onto its range
- $T^*(X) = \text{(closure of)} \ subTRO \ generated \ by \ \alpha_X(X)$
- $\forall \ \pi : X \to T \ JC^*$-triple homom into TRO T, $\exists! TRO$-hom $\tilde{\pi} : T^*(X) \to T$ lifting π
 $\left(\tilde{\pi}(\alpha_X(x)) = \pi(x) \forall x \in X \right)$
\[T^*(X) \]

\[\alpha_X \uparrow \xrightarrow{\tilde{\pi}} \]

\[X \xrightarrow{\pi} T \]

Consequence: Given a JC*-triple \(X \) (up to equivalence), for any realisation \(X \subset B(H) \) as a JC*-subtriple, \(\text{TRO}(X) \cong T^*(X)/\mathcal{I} \) for \(\mathcal{I} \subset T^*(X) \) a TRO ideal with \(\mathcal{I} \cap \alpha_X(X) = \{0\} \).

Each such \(\mathcal{I} \) yields an operator space structure \(X_{\mathcal{I}} \) on \(X \) — all possible JC*-operator space structures.
How to find $T^*(X)$?

Tripotents are a key concept in JC^*-triples $X: e \in X$ with $\{e, e, e\} = e$. Associated Peirce spaces $X_\lambda(e) = \{x \in X : 2\{e, e, x\} = \lambda x\}$ $X_\lambda(e)$ nonzero implies $\lambda \in \{0, 1, 2\}$.

$X_2(e)$ is a Jordan $*$-algebra: Jordan product $x \cdot y = \{x, e, y\}$, conjugation $x \mapsto \{e, x, e\}$

A tripotent $e \in X$ is called unitary if $X_2(e) = X$.

Propostion: If \exists unitary tripotent $e \in X$, $T^*(X)$ ‘equals’ the universal C^*-algebra generated by the $J\mathcal{C}^*$-algebra structure. (computed in 1970s – by
Alfsen, Stormer, Hanche-Olsen).

- $X = M_n, \quad T^*(M_n) = M_n \oplus M_n, \quad \alpha_X(x) = x \oplus x^t \quad (n \geq 2)$

- $X = \mathcal{B}(H), \quad T^*(X) = \mathcal{B}(H) \oplus \mathcal{B}(H), \quad \alpha_X(x) = x \oplus x^t$

 TRO ideals with $\mathcal{I} \cap \alpha_X(X) = \{0\}$ are $\mathcal{I} = \{0\}$, (always gives $\text{MAX}_{JC}(X)$), $\mathcal{I} = \{0\} \oplus \mathcal{B}(H)$, $\mathcal{I} = \mathcal{B}(H) \oplus \{0\}$, $\mathcal{I} = \{0\} \oplus \mathcal{K}(H)$, $\mathcal{I} = \mathcal{K}(H) \oplus \{0\}$, \ldots

- $X = \{x \in \mathcal{B}(H) : x^t = x\} \quad (\text{dim} \geq 2) \quad T^*(X) = \mathcal{B}(H)$
\(X = \{ x \in \mathcal{B}(H) : x^t = -x \} \) (6 \leq \dim H, \dim H \text{ even or } \infty) \ T^*(X) = \mathcal{B}(H), \ \alpha_X(x) = x.

\(X = V_k = \text{spin factor } (k \geq 3) \ (\dim V_k = k + 1) \)
\(T^*(V_{2n}) = M_{2n}, \ T^*(V_{2n+1}) = M_{2n} \oplus M_{2n}, \ T^*(V_k) = \text{CAR if } k \text{ infinite.} \)

For the other Cartan factors (building blocks for \(JC^*\)-triples)

\(X = M_{k,n} = \mathcal{B}(H, K), \ T^*(X) = \mathcal{B}(H, K) \oplus \mathcal{B}(K, H), \ \alpha_X(x) = x \oplus x^t \ (2 \leq n < k) \)
• $X = \{ x \in M_{2n+1} : x^t = -x \} \ (n \geq 2)$, $T^*(X) = M_{2n+1}$, $\alpha_X(x) = x$.

• $X = \ell^2_k = M_{k,1}$, $T^*(X) = \bigoplus_{j=1}^{k} B \left(\Lambda^j(X), \Lambda^{j-1}(X) \right)$ contained in Fock space on dimension k ($\alpha_X(X) =$ span of k annihilation operators for o.n basis of ℓ^2_k, operators satisfying CAR)

• $X = H$ general Hilbert space, $T^*(X) = \text{TRO}$ generated by embedding in Fock space.
Further results

T^* is an exact functor JC^*-triples \rightarrow TROs

$\dim X < \infty$ (X a JC^*-triple) \Rightarrow $\dim T^*(X) < \infty$

Corollary (results of Neal & Russo) Characterisation of (finite dimensional) JC^*-subtriples $X \subset B(H)$ up to complete isometry.

Interesting examples (say for injective envelopes)?